Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.

Identifieur interne : 000766 ( Main/Exploration ); précédent : 000765; suivant : 000767

Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.

Auteurs : Yuxi Shan [États-Unis] ; Robert A. Schoenfeld ; Genki Hayashi ; Eleonora Napoli ; Tasuku Akiyama ; Mirela Iodi Carstens ; Earl E. Carstens ; Mark A. Pook ; Gino A. Cortopassi

Source :

RBID : pubmed:23350650

Descripteurs français

English descriptors

Abstract

AIMS

Oxidative stress is thought to be involved in Friedreich's ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease.

RESULTS

YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene transcripts are the known targets of the antioxidant transcription factor nuclear factor-E2-related factor-2 (Nrf2), Nrf2 expression was measured; it was significantly decreased at the transcript and protein level in both the DRG and the cerebella of the YG8R hemizygous mouse; further, frataxin expression was significantly correlated with Nrf2 expression. Functionally, in YG8R hemizygous DRG, the total glutathione levels were reduced and explanted cells were more sensitive to the thioredoxin reductase (TxnRD) inhibitor auranofin, a thiol oxidant. In cell models of FRDA, including Schwann and the DRG, frataxin deficiency caused a decreased expression of the Nrf2 protein level in the nucleus, but not a defect in its translocation from the cytosol. Further, frataxin-deficient cells had decreased enzyme activity and expression of TxnRD, which is regulated by Nrf2, and were sensitive the TxnRD inhibitor auranofin.

INNOVATION AND CONCLUSION

These results support a mechanistic hypothesis in which frataxin deficiency decreases Nrf2 expression in vivo, causing the sensitivity to oxidative stress in target tissues the DRG and the cerebella, which contributes to the process of neurodegeneration.


DOI: 10.1089/ars.2012.4537
PubMed: 23350650
PubMed Central: PMC3797453


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.</title>
<author>
<name sortKey="Shan, Yuxi" sort="Shan, Yuxi" uniqKey="Shan Y" first="Yuxi" last="Shan">Yuxi Shan</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Molecular Biosciences, University of California , Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1 Department of Molecular Biosciences, University of California , Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schoenfeld, Robert A" sort="Schoenfeld, Robert A" uniqKey="Schoenfeld R" first="Robert A" last="Schoenfeld">Robert A. Schoenfeld</name>
</author>
<author>
<name sortKey="Hayashi, Genki" sort="Hayashi, Genki" uniqKey="Hayashi G" first="Genki" last="Hayashi">Genki Hayashi</name>
</author>
<author>
<name sortKey="Napoli, Eleonora" sort="Napoli, Eleonora" uniqKey="Napoli E" first="Eleonora" last="Napoli">Eleonora Napoli</name>
</author>
<author>
<name sortKey="Akiyama, Tasuku" sort="Akiyama, Tasuku" uniqKey="Akiyama T" first="Tasuku" last="Akiyama">Tasuku Akiyama</name>
</author>
<author>
<name sortKey="Iodi Carstens, Mirela" sort="Iodi Carstens, Mirela" uniqKey="Iodi Carstens M" first="Mirela" last="Iodi Carstens">Mirela Iodi Carstens</name>
</author>
<author>
<name sortKey="Carstens, Earl E" sort="Carstens, Earl E" uniqKey="Carstens E" first="Earl E" last="Carstens">Earl E. Carstens</name>
</author>
<author>
<name sortKey="Pook, Mark A" sort="Pook, Mark A" uniqKey="Pook M" first="Mark A" last="Pook">Mark A. Pook</name>
</author>
<author>
<name sortKey="Cortopassi, Gino A" sort="Cortopassi, Gino A" uniqKey="Cortopassi G" first="Gino A" last="Cortopassi">Gino A. Cortopassi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23350650</idno>
<idno type="pmid">23350650</idno>
<idno type="doi">10.1089/ars.2012.4537</idno>
<idno type="pmc">PMC3797453</idno>
<idno type="wicri:Area/Main/Corpus">000768</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000768</idno>
<idno type="wicri:Area/Main/Curation">000768</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000768</idno>
<idno type="wicri:Area/Main/Exploration">000768</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.</title>
<author>
<name sortKey="Shan, Yuxi" sort="Shan, Yuxi" uniqKey="Shan Y" first="Yuxi" last="Shan">Yuxi Shan</name>
<affiliation wicri:level="2">
<nlm:affiliation>1 Department of Molecular Biosciences, University of California , Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>1 Department of Molecular Biosciences, University of California , Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schoenfeld, Robert A" sort="Schoenfeld, Robert A" uniqKey="Schoenfeld R" first="Robert A" last="Schoenfeld">Robert A. Schoenfeld</name>
</author>
<author>
<name sortKey="Hayashi, Genki" sort="Hayashi, Genki" uniqKey="Hayashi G" first="Genki" last="Hayashi">Genki Hayashi</name>
</author>
<author>
<name sortKey="Napoli, Eleonora" sort="Napoli, Eleonora" uniqKey="Napoli E" first="Eleonora" last="Napoli">Eleonora Napoli</name>
</author>
<author>
<name sortKey="Akiyama, Tasuku" sort="Akiyama, Tasuku" uniqKey="Akiyama T" first="Tasuku" last="Akiyama">Tasuku Akiyama</name>
</author>
<author>
<name sortKey="Iodi Carstens, Mirela" sort="Iodi Carstens, Mirela" uniqKey="Iodi Carstens M" first="Mirela" last="Iodi Carstens">Mirela Iodi Carstens</name>
</author>
<author>
<name sortKey="Carstens, Earl E" sort="Carstens, Earl E" uniqKey="Carstens E" first="Earl E" last="Carstens">Earl E. Carstens</name>
</author>
<author>
<name sortKey="Pook, Mark A" sort="Pook, Mark A" uniqKey="Pook M" first="Mark A" last="Pook">Mark A. Pook</name>
</author>
<author>
<name sortKey="Cortopassi, Gino A" sort="Cortopassi, Gino A" uniqKey="Cortopassi G" first="Gino A" last="Cortopassi">Gino A. Cortopassi</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antioxidants (metabolism)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Friedreich Ataxia (genetics)</term>
<term>Friedreich Ataxia (metabolism)</term>
<term>Ganglia, Spinal (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron-Binding Proteins (genetics)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>NF-E2-Related Factor 2 (biosynthesis)</term>
<term>NF-E2-Related Factor 2 (genetics)</term>
<term>Rats (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antioxydants (métabolisme)</term>
<term>Ataxie de Friedreich (génétique)</term>
<term>Ataxie de Friedreich (métabolisme)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Facteur-2 apparenté à NF-E2 (biosynthèse)</term>
<term>Facteur-2 apparenté à NF-E2 (génétique)</term>
<term>Ganglions sensitifs des nerfs spinaux (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Protéines de liaison au fer (génétique)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Rats (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Iron-Binding Proteins</term>
<term>NF-E2-Related Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Iron-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Facteur-2 apparenté à NF-E2</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Friedreich Ataxia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ataxie de Friedreich</term>
<term>Facteur-2 apparenté à NF-E2</term>
<term>Protéines de liaison au fer</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Friedreich Ataxia</term>
<term>Ganglia, Spinal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Ataxie de Friedreich</term>
<term>Ganglions sensitifs des nerfs spinaux</term>
<term>Protéines de liaison au fer</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Disease Models, Animal</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Rats</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>Oxidative stress is thought to be involved in Friedreich's ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene transcripts are the known targets of the antioxidant transcription factor nuclear factor-E2-related factor-2 (Nrf2), Nrf2 expression was measured; it was significantly decreased at the transcript and protein level in both the DRG and the cerebella of the YG8R hemizygous mouse; further, frataxin expression was significantly correlated with Nrf2 expression. Functionally, in YG8R hemizygous DRG, the total glutathione levels were reduced and explanted cells were more sensitive to the thioredoxin reductase (TxnRD) inhibitor auranofin, a thiol oxidant. In cell models of FRDA, including Schwann and the DRG, frataxin deficiency caused a decreased expression of the Nrf2 protein level in the nucleus, but not a defect in its translocation from the cytosol. Further, frataxin-deficient cells had decreased enzyme activity and expression of TxnRD, which is regulated by Nrf2, and were sensitive the TxnRD inhibitor auranofin.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>INNOVATION AND CONCLUSION</b>
</p>
<p>These results support a mechanistic hypothesis in which frataxin deficiency decreases Nrf2 expression in vivo, causing the sensitivity to oxidative stress in target tissues the DRG and the cerebella, which contributes to the process of neurodegeneration.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23350650</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.</ArticleTitle>
<Pagination>
<MedlinePgn>1481-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2012.4537</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">Oxidative stress is thought to be involved in Friedreich's ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene transcripts are the known targets of the antioxidant transcription factor nuclear factor-E2-related factor-2 (Nrf2), Nrf2 expression was measured; it was significantly decreased at the transcript and protein level in both the DRG and the cerebella of the YG8R hemizygous mouse; further, frataxin expression was significantly correlated with Nrf2 expression. Functionally, in YG8R hemizygous DRG, the total glutathione levels were reduced and explanted cells were more sensitive to the thioredoxin reductase (TxnRD) inhibitor auranofin, a thiol oxidant. In cell models of FRDA, including Schwann and the DRG, frataxin deficiency caused a decreased expression of the Nrf2 protein level in the nucleus, but not a defect in its translocation from the cytosol. Further, frataxin-deficient cells had decreased enzyme activity and expression of TxnRD, which is regulated by Nrf2, and were sensitive the TxnRD inhibitor auranofin.</AbstractText>
<AbstractText Label="INNOVATION AND CONCLUSION" NlmCategory="CONCLUSIONS">These results support a mechanistic hypothesis in which frataxin deficiency decreases Nrf2 expression in vivo, causing the sensitivity to oxidative stress in target tissues the DRG and the cerebella, which contributes to the process of neurodegeneration.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shan</LastName>
<ForeName>Yuxi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>1 Department of Molecular Biosciences, University of California , Davis, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schoenfeld</LastName>
<ForeName>Robert A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hayashi</LastName>
<ForeName>Genki</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Napoli</LastName>
<ForeName>Eleonora</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Akiyama</LastName>
<ForeName>Tasuku</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Iodi Carstens</LastName>
<ForeName>Mirela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carstens</LastName>
<ForeName>Earl E</ForeName>
<Initials>EE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pook</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cortopassi</LastName>
<ForeName>Gino A</ForeName>
<Initials>GA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AG11967</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AG23311</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>USPHS EY12245</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NIA 5R01AG16719-12</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AG16719</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS077777</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051267">NF-E2-Related Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495636">Nfe2l2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098527">frataxin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="Y">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005621" MajorTopicYN="N">Friedreich Ataxia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005727" MajorTopicYN="N">Ganglia, Spinal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051267" MajorTopicYN="N">NF-E2-Related Factor 2</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23350650</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2012.4537</ArticleId>
<ArticleId IdType="pmc">PMC3797453</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neurology. 2000 Dec 12;55(11):1719-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2000 Dec 12;55(11):1752-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Feb;27(2):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11175786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Fall;2(3):461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11229359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2001 Sep 15;10(19):2061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Clin Invest. 2001 Nov;31(11):1007-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem Suppl. 2001;Suppl 37:120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2002 Jun 15;198(1-2):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9617-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12122214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2002 Nov 15;11(24):3055-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 7;278(10):8135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12506115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Apr 15;23(8):3394-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12716947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Jul 15;12(14):1699-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Aug;112(4):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2003 Oct 15;66(8):1499-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 24;278(43):42588-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jan;61(2):192-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytometry A. 2004 Apr;58(2):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15057970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2004 Aug;84(2):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15233994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q J Med. 1983 Autumn;52(208):489-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6228949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CRC Crit Rev Biochem. 1987;22(2):111-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3315461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 1988 Aug;38(8):1292-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3041313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jul 22;364(6435):362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Mar 8;271(5254):1423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8596916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1996 Sep;59(3):554-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8751856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1996 Oct 17;335(16):1169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8815938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1997 May;41(5):675-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9153531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Oct;17(2):215-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9326946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1997 Oct;6(11):1771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9302253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Aug 7;273(32):20096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9685351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1999 Mar;8(3):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9949201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4497-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2004 Dec 1;13(23):3007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2005 Jun 15;233(1-2):145-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15896810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Paediatr. 2005 Feb;94(2):132-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15981742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 16;280(37):32485-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Nov 15;14(22):3397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16203742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2005 Dec 15;14(24):3857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Jan;20(1):172-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Nov-Dec;8(11-12):1941-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17034341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2006 Nov;88(5):580-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Apr 15;109(8):3567-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 May 15;42(10):1561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2007 Apr 15;16(8):929-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2007 May;101(4):1041-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17394579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Jul 1;43(1):4-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2007 Aug;114(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2007 Dec;1122:276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Mar 5;582(5):715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2008 Mar;82(3):652-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Jul 1;181(1):680-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18566435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2008 Jul;88(3):1089-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18626067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2008 Sep 15;17(18):2790-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2008 Oct;39(4):400-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2008 Oct 30;76(9):1097-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18789312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(1):e4253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2008 Dec;73(13):1493-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19216714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2009 Aug;132(Pt 8):2170-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Med Res. 2009 May;129(5):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Nov;1792(11):1052-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19679182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2009 Dec 15;287(1-2):111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Mar;11(3):497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18717629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Dec 14;187(6):761-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19951898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2009 Dec;118(6):763-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19727777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Jan;6(1):e1000812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20090835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2010 May;120(5):1749-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20364084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Aug 25;30(34):11369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18838-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Biochem. 2010 Dec;21(12):1222-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20153624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(1):e16199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Clin Exp Pathol. 2011 Mar;4(3):215-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21487518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Aug 23;50(33):7265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21776984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2011 Oct;123(2):590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1822(2):212-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22561702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2012 Sep 15;21(18):4060-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2000 Jan 22;9(2):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10607838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2000 May 1;9(8):1219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10767347</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Akiyama, Tasuku" sort="Akiyama, Tasuku" uniqKey="Akiyama T" first="Tasuku" last="Akiyama">Tasuku Akiyama</name>
<name sortKey="Carstens, Earl E" sort="Carstens, Earl E" uniqKey="Carstens E" first="Earl E" last="Carstens">Earl E. Carstens</name>
<name sortKey="Cortopassi, Gino A" sort="Cortopassi, Gino A" uniqKey="Cortopassi G" first="Gino A" last="Cortopassi">Gino A. Cortopassi</name>
<name sortKey="Hayashi, Genki" sort="Hayashi, Genki" uniqKey="Hayashi G" first="Genki" last="Hayashi">Genki Hayashi</name>
<name sortKey="Iodi Carstens, Mirela" sort="Iodi Carstens, Mirela" uniqKey="Iodi Carstens M" first="Mirela" last="Iodi Carstens">Mirela Iodi Carstens</name>
<name sortKey="Napoli, Eleonora" sort="Napoli, Eleonora" uniqKey="Napoli E" first="Eleonora" last="Napoli">Eleonora Napoli</name>
<name sortKey="Pook, Mark A" sort="Pook, Mark A" uniqKey="Pook M" first="Mark A" last="Pook">Mark A. Pook</name>
<name sortKey="Schoenfeld, Robert A" sort="Schoenfeld, Robert A" uniqKey="Schoenfeld R" first="Robert A" last="Schoenfeld">Robert A. Schoenfeld</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Shan, Yuxi" sort="Shan, Yuxi" uniqKey="Shan Y" first="Yuxi" last="Shan">Yuxi Shan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000766 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000766 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23350650
   |texte=   Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23350650" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020